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Abstract The liquidexpanded (rr)-liiuid-mndensed (E) phase uansition in monolayers of 
amphiphilic molecules is investigated in the pair approximation of the cluster variation method. 
The model analysed is the model proposed by Firpo er al which can be mapped into the Blume- 
Emely-Griffitb Hamiltonian. The signa" of the EE transition are searched for as break 
points on the isotherms of the surface pressure-molecular area diagram. The results obtained 
in the pair approximation are improved with respect to those obtained in the Brag&Williams 
approximation for a sel of typical energy and entropy parameters in the case of pentadecanoic 
acid. In particular, the LE-LC phase m i t i o n  is shown to be weakly first order. A comparison 
with experimental m l t s  gives satisfactory agreement. 

1. Introduction 

The so-called liquid-expanded (m)-liquid-condensed (IC) phase transition is one of several 
phase transitions occuning in monolayers of simple amphiphilic molecules at the ai-water 
interface. The origin of these monomolecular layers can be easily understood by considering 
that the elongated molecules generally present a hydrophobic end (a hydrocarbon chain) and 
a hydrophilic end (an acid or alcohol radical, for example). The most common experimental 
study of these phases is carried out by investigating the surface pressure-molecular area 
isotherm. The signature of the phase transition is a break point on the isotherm. Much 
experimental work has been done on these systems [l], but the nature of the LELC transition 
has been a long-standing controversy. Indeed the isotherm does not exhibit a plateau which 
is as clearly horizontal as that of the gas-liquid transition. A number of experimental factors 
can influence the results, preventing simple interpretation [2]. First, some experimental data 
suggested a second-order transition [3]. Subsequent measurements performed on carefully 
purified amphiphilics indicate that the transition is first order [4]. These results are reinforced 
by the conventional surface potential method [5 ] ,  optical second-harmonic generation studies 
[6], fluorescence microscopy [Z, 7.81 and electron microscopy 191. A variety of techniques 
have been used to analyse these systems. Their viscoelastic behaviour has been investigated 
by means of light-scattering experiments [IO]. Infrared-visible sum-frequency vibrational 
spectroscopy has been employed to monitor the molecular orientation at different surface 
densities [ll]. The shuctural properties and elasticity of amphiphilic monolayers have been 
analysed using x-ray reflectivity [8,12]. 

On the theoretical side, some models have been proposed in order to describe this 
interesting phenomenon. A review of the first theoretical contributions has been given 
in [13]. Recently some new theoretical efforts have been made to describe amphiphilic 
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monolayers [14-171. In this paper we refer to a model proposed some years ago by Firpo, 
Legre, Bois and Baret (FLBB) [18] which accounts for many of the fundamental properties of 
these systems. The model was firstly studied in the Bragg-Williams approximation, giving 
a satisfactory qualitative description. The break points on the isotherms, as calculated 
in that approximation, were in fair agreement with many experimental measurements, 
and the transition was obtained as second order. Subsequently, Legre et a1 [19], after 
mapping the FLBB model into a spin-1 Blue-Emery-Griffiths (BEG) model [ZO], have 
investigated the properties of the system with a Migdal-Kadanoff approximate position- 
space renormalization group. They have obtained the LELC transition, without finding 
the break points on the isotherms. The difference was attributed to long-range attractive 
interactions not considered in the model, which are implicit in the mean-field treatments of 
two-dimensional systems 1191. Subsequently, Legre et al [21] have studied the same model 
by introducing stresses of mean-field type in the Migdal-Kadanoff decimation procedure, 
obtaining the compressibility jump. 

In this paper we analyse the FLBB model in the pair approximation of the cluster variation 
method (CVM) [22,23]. Particular attention is devoted to the study of the isotherms, and 
to the localization of the break points. The CVM is generally very accurate in determining 
the critical parameters of systems. Its application to this amphiphilic system is particularly 
purposeful owing to two important characteristics of the method. First, since the CVM is a 
generalization of the mean-field approximation, it is certainly interesting to investigate the 
behaviour of the system with a slightly complex but more accurate approximation such as 
the pair approximation, where some correlations are taken into account. This enables one to 
verify better whether the model has the features peculiar to describing the LELC transition 
and implicitly to include long-range attractive interactions between unshielded molecular 
dipoles not considered in it. It should be remembered that in the case of l / r 3  attractive 
interactions the marginal dimension for which Landau theory applies is two [%I. Second, 
the formulation of the CVM that we apply is particularly convenient for analysing the pressure 
dependence of the order parameters, thus leading to a natural investigation of the order of 
the transition. The CVM is well suited to studying first-order transitions (in which, starting 
from the disordered phase, the Innsition occurs before the fluctuations have increased too 
much) [25] and our calculations indicate that the LELC phase transition is weakly first order. 
Moreover our approach gives results in better agreement with experimental data. 

The paper is organized as follows. In section 2 we present the model by reviewing the 
main steps in its original construction and we show how it is related to the BEG model. 
We also discuss the choice of a suitable ensemble to be used in the CVM approach. In 
section 3 we develop the free-energy calculation in the CVM approach and the necessq 
tools to draw isotherms. In section 4 we present the isotherms and the main results of our 
calculations and we make comparisons with experiments. Finally, in section 5 we make 
some conclusive remark. 
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2. The model 

Let us begin with short review of the model. It is a lattice three-state (spin-1) model to 
account for the basic properties of monolayers of simple amphiphilic molecules (having a 
single polar group and a single hydrocarbon chain) near the L E L C  transition. These states 
simulate the molecular states (of different helicities) corresponding to a chain with a kink 
in the plus state (+1) and to a chain with a kink in the minus state (-1). These kinks 
are intrachain defects in the configuration gn~che(+ttrans-gauche(-) in the plus state and 
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gauche(-)-trans-gauche(+) in the minus state. Associated with these molecular states are 
the number operators N+ and N-.  The vacancies are the third state (0). with the associated 
number operator NO. In a lattice spin-1 system these states correspond to the eigenvalues 
Si = +1 (plus state), 0 (vacancies), -1 (minus state) of the z component of a spin-1 
operator at the lattice site i. Let us introduce the occupation-number operators at site i, as 
is usual in a lattice gas approach, as the Kronecker deltas S(Si,  1) = ;(Si' + Si) for a plus 
state, d(Si, -1) = f(S: - Si) for a minus state, and S(S;, 0) = 1 - Si' for a vacancy. From 
these quantities we can form the following number operators for the pairs of molecules (at 
nearest-neighbour sites): 

N+- + N-+ = C[S(Si, l)S(Sj, -1) +S(S i ,  -l)&(Sj, l)]. 
(ij) 

Moreover we have 

where N is the number of molecules, N' is the number of lattice sites and (ij) indicates 
summation of the nearest neighbours. The FLBB Hamiltonian of the system is [18] 

If = -lOl(N++ + N+- + N-+ + A'--) - lAol(NYJ + N!!!) + AE(N+ + N - )  (2.6) 

where 101 denotes the attractive interaction energy between nearest-neighbour molecules, 
IAol is an additional attractive interaction energy to be associated with those nearest- 
neighbour molecules in the same state which partially overlap, giving a decrease in area per 
molecule, AI? is the excitation energy of the kink in the (+l) and (-1) states, and NyJ  
and N-- are the numbers of ++ and -- nested pairs, respectively. 

An inhachain entropy AS, can be associated with the molecular states (+1) and (-l), 
whose defect is free to move along the chain: 

til 

AS, = A S [ ( N +  + N-) - a(Nyi+ N!?)] (2.7) 

where AS is the internal entropy for (+1) and (-1) states and a is a positive coefficient 
which describes phenomenologically the entropy lost from a nested pair of molecules in the 
same state. Moreover the total area of the monolayer can be written as 

A = k o ( N +  + N - )  + vuoN0 - oo(N:i + A'!?) (2.8) 

where the first term is the area of the states (+1) and (-1) (2u0 is the area of an isolated 
molecule), the second term is the vacancy area (v is an adjustable parameter) and the 
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K i d  term accounts for the area reduction due to packing of the kinks. Denoting by n 
the surface pressure and by T the absolute temperature, we consider the thennodynamic 
potential [IS, 191 

C Buzano and L R Evangeiista 

HH = H - T A &  + nA (2.9) 

which, utilizing (2.1)-(2.5), can be written in the form of the spin-1 BEG Hamiltonian [ZO] 

(2.10) 

In (2.10) the following quantities have been introduced: 

J = ( lAol+ ~ U O  --aTAS)/z 

D = lloo(2- V )  + A E  - T A S  

K = J + 101 
M = V ~ O  

(2.11) 

z denoting the lattice coordination number. Moreover the assumption N t .  + N-- 0)  = 
(2 /z ) (N++ + N--) has been made [18]. The chemical potential p is then given by 

(2.12) 

where G is the Gibbs free energy, the symbol ( ) means ensemble average and S denotes 
the entropy of the system (without the intrachain entropy included in (HH)). The ensemble 
considered in (2.12) is the 'T-n-N'  ensemble. Taking into account that, according to (?,.lo), 
HH has been expressed as a spin-1 Hamiltonian characterized by the dynamical variables Sj 
(i = 1 . . . N') obeying relation (2.4), it is more convenient to utilize an ensemble 'T-n-p' 
in which the number N' of lattice sites is fixed and not the number N of molecules [19]. 
This is possible in view of the thermodynamic limit. In this context we infroduce the 'free 
energy' 

G 
fi  = - N 

G = (HH) - T S  

Y = G - p ( N )  N = (N) (2.13) 

and, according to (2.12), the equation of state of the system is 

Y ( T ,  ll, p )  = 0. (2.14) 

From (2.12), (2.13) and (2.4) we can write 

N' 
Y = (H') - T S  H* = HH -fix$ (2.15) 

i = I  

and H' is again a BEG Hamiltonian. The problem is now reduced to the determination of 
the 'free energy' Y associated with the spin-I 'Hamiltonian' H'. With this aim we shall 
utilize the CVM in the pair approximation. 
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3. The cluster variation approach 

The CVM is based on an approximate expression of the enwopy of the system as a sum of 
suitably weighted cluster entropies relative to a set r of maximal clusters and of au their 
subclusters [23]: 

S = z a , N , S ,  S, = -kgTr@,lnp,). (3.1) 

In (3.1) Ne is the total number of clusters of the LY kind and a. is a counting factor, which 
is easily calculated using the Moebius function [231. S, is the entropy associated with the 
cluster 01 and pa is the reduced density matrix for the cluster a, which has to be determined 
by the minimum-free-energy requirement subject to the constraints 

ucr 

TI pa = 1 pm Trw\a pw o > 01. (3.2) 

( T q u  means the partial trace.) 

and the free energy f per site can be expressed as [26] 
In the pair approximation adopted here, the maximal cluster is a nearest-neighbour pair 

+ k ~ T I ~ z T r ( p ~ l n ~ ~ )  + (1 -z)Tr(ps1nps)1 (3.3) 
f=-=- (H*) 

N' N' 

where ps and pp denote the site and pair density matrices, respectively, and ks is the 
Boltzmann constant. 

In order to work with only independent variables it is useful to introduce the order 
parameters 

y1 = (Si )  Y2 = (Si') (3.4) 

y3 = (SiSj) y4 = (S iS j )  y5 = (S;$). 

and the nearest-neighbour two-site correlation functions 

(3.5) 2 

(H') can be written in terms of y; (i = 1 , .  . . , 5 )  as 

(3.6) 

Analogously the elements of site and pair density matrices (which turn out to be diagonal) 
can be written in terms of yi: 

(H")  - = -4zJy3 - 4zKy5 + D'fi + M D' = D - p. " 

PSI = 4(fi + Y d  P a  = 1 - A  Ps3 = 4(Y2 - YI)  (3.7) 

and 
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which satisfies the constraints (3.2). The minimization of the free energy with respect to yj 
(y = 1, . . . ,5) requires the solution of five non-linear algebraic equations 

C Buzano and L R Evangelisfa 

This system can be solved explicitly for the correlation functions, obtaining [26] 

w ( B +  R) - 2 
W 

w(B - R) w ( B  + R) + 2 
W YS = W Y4 = Y3 = 

(3.9) 

(3.10) 

In addition the order parameters y1 and yz satisfy the equations 

(3.12) E (  v - C) + w(B - R) t ( V  + C) + w(B f R) f 2 
W Y2 = W YI = 

which can be solved numerically by iteration. By insertion of these solutions in (3.6H3.8) 
and (3.3) and using (2.14), the state equation of the system is determined. From (2.14), 
given the values of T and n is it possible to determine the chemical potential p and to 
draw the IT-& isotherms. 

The area per molecule given by U = (A)/?/  can be determined by the relation [19] 

(3.13) 

or more directly, using the definition (2.8) and (2.1)-(2.5), (3.3) and (3.3, by 

0 = uoo(2 - + - ;(Ys + Y3)l/Yd. (3.14) 

We now have the i7-u isotherms. 
The procedure developed here for the CVM pair approximation can be easily extended 

in order to achieve a more accurate determination of the free energy [27], e.g. assuming 
as maximal cluster a square for a square lattice. In this case, however, the calculation is 
much more complex and often the results do not change appreciably with respect to those 
obtained in the pair approximation, which already takes into account some correlations. We 
remember that the CVM when utilized in the site approximation corresponds to the mean-field 
approach. 
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c 

I 
50 45 2.5 30 35 40 

c5 
Figure 1. ll (mN m-')-o (A') isotherms in the CYM (thick Lines) and in the mean-field 
approximation (Lhin tines): -, -. T = 289 K; - - -, - - -, T = 296 K, - . -, - . -, 
T = 303 K, . . . . .., . . . . . .. T = 310 K. 

4. Isotherms and order parameters 

In the previous section we have identified a procedure to evaluate the rI-u isotherms. Let 
us now determine these isotherms having in mind a specific substance: pentadecanoic acid. 
For this system, FLBB 1181 have proposed the following values for the model parameters: 

IwI = 216 IAol = 1565 A E  = 500 AS = 3.5 
(4.1) 

uo=22 v = 2  O1=1.2 

(energy parameters are in ks = 1 units, uo are in squared &ngstroms and v and 01 are 
dimensionless). 

In order to compare our results with those of FLBB we have performed calculations 
for the square lattice using the values (4.1). Figure 1 shows the il-u isotherms obtained 
in the CVM pair approximation (thick lines) and the corresponding isothenns evaluated 
in the mean-field treatment of FLBB (thin lines). In both the approximations there is a 
break point on each of the isotherms, indicating the LE-U iransition. However, the CVM 
pair approach gives different positions of these break points, in better agreement with the 
experimental values. For instance, for the isotherm at T = 296 K, the experimental break 
point-in units of milhewtons per metre for pressure and squared hgstroms for molecular 
area-is (n,u) = (5,32) from the results of Winch and Eamshaw (as quoted in [SI) 
(determined by interpolating the experimental values at T = 295.56 K and at T = 296.66 K) 
and (lT,u) = (cx 5.8,33-34) by using the data reported in [2]. Our calculations give 
(il, U )  = (75,334,  while the results of FLBB indicate that (il, U )  = (2.8,45.6). For 
T = 303 K the experimental data collected in [2] give (i l ,u) = (E 13.528-29), our 
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calculations result in ( n , ~ )  = (9.5.32.4) and the mean-field approximation [IS] gives 
(i7, U )  = (4.1,42.5). 

In order to investigate the characteristics of the LELC transition, it is useful to analyse 
the behaviour of the order parameter y ~ .  By definition (3.4), y~ # 0 corresponds to the 
situation in which one of the two molecular states is more populated and therefore the area 
per molecule is smaller as molecules in the same state can partially overlap; in other words 
the LC phase is characterized by yj # 0, whereas the LE phase is characterized by yl = 0. 
Figure 2 gives yl versus l7 for the temperature values in figure 1. As we can observe, 
the L 6 L C  transition is weakly first order according to the more recent experiments [4-71. 
Figure 3 shows the behaviour of yz, y3, y4, ys  versus i7 in the typical case T = 303 K. The 
order of the transition is the main difference between our results and those of FLBB [IS]; 
it is first order in our work and second order in their work. This is a further improvement 
obtained in the CVM pair approximation with respect to the mean-field treatment. 
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By using the parameter values (4.1) we have compared our results with some recent 
experiments. The data in figure 4 have been extracted from [2] and show the experimental 
isotherms of Harkins er ul [3], of Pallas and Pethica [4] and of Moore et nl [2] at 
T = 298.16 K. The dashed line is our result. In figure 5 we give the data of Guyot- 
Sionnest er ul [Ill at T = 301.66 K and our data (dashed line). In  order to make a more 
complete comparison, taking into account that the parameter values (4.1) were proposed by 
FLBB on the bask of the experimental data in [28], which, as shown by [2,4], underestimate 
the gas-liquid critical temperature, we  have made a new choice of the parameters, i.e. 

101 = 220 IAol = 1580 AE = 500 AS = 3.5 
(4.2) 

U0 =21 U = 2  01 = 1.21. 
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n 
Figure 3. Carrelations versus n ("4 m-') at T = 303 K - - -. y1; . . . . . ., y,; -, y4; . YS. 

E 

Figure 4. TIE CVM n ("4 m - ' b  (Az) isotherm 
(- - -) compared with the data of Harkins er a1 P] 
(A), of Mlas and Pethica [4] (+) and of Moore el 
a1 [a] (-), utilizing the parameter values (4.1). 
T = 298.16 K. 

This choice of parameters follows the same criteria utilized by K B B  [le], but now using 
the more accurate experimental data given in [2]. The remaining arbitrariness is in the 
selection of these parameters is useful to obtain good estimates for the break points. We 
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C 

Figure 5. ?he CVM il (mN m - ' b  (A2) isotherm (- - -) compared with the data of Guyot- 
Sionnest c r d  [ i l l  (+), utilizing the pyameter values (4.1). T = 301.66 K. 

obtain break points closer to the experimental values as shown in figures 6 and 7 which 
correspond to figures 4 and 5 ,  respectively. The global agreement is fairly satisfactory. 
Better confirmation of the validity of the model could be obtained from utilization of the 
CVM at a higher level of approximation, which properly includes more correlations. 

Figure 6. As in figure 4, utilizing the p m e t e r  values 
(4.2). 

5. Concluding remarks 

Using the L B B  model, which was proposed to describe the LEK kansition in amphiphilic 
monolayers at the air-water interface, we have determined the surface pressuremolecular 
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Figure 7. As in figure 5, utilizing the parameter values (4.2) 

area isotherms and found the expected break point at the LELC transition. An accurate 
analysis of the order parameters introduced in our procedure has shown a weakly first-order 
aansition agreeing with the more recent experiments. Our investigation has been performed 
in the pair approximation of the CVM which allows us to take some correlations correctly 
into account. The good applicability of a generalized mean-field methodology to a two- 
dimensional system can be related to the presence in the real system of long-range attractive 
interactions, which reduce the upper critical dimension. At the same time the model seems to 
possess the basic features to describe the LELC transition, as suggested by the improvement 
obtained in the CVM pair approximation with respect to the Bragg-Williams approach. The 
presence of a first-order transition is the main difference between our results and those of 
FLBB. Moreover, for a set of significant temperatures, also the quantitative agreement with 
experimental data is improved. 

The results obtained here confirm the validity of the FLBB model and encourage further 
investigation employing the CVM at a higher level of approximation. Work is in progress 
along this line. 
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